
KARLSRUHE INSTITUTE OF TECHNOLOGY (KIT) – OPERATING SYSTEMS GROUP

Betriebssysteme
02. OS Concepts

Prof. Dr.-Ing. Frank Bellosa | WT 2016/2017

KIT – Universität des Landes Baden-Württemberg und

nationales Forschungszentrum in der Helmholtz-Gemeinschaft
www.kit.edu

http://www.kit.edu

Where we ended last lecture

OS makes hardware useful to the programmer

Provides abstractions for applications
Manages and hides details of hardware
Multiplexes hardware to multiple programs

Provides protection
E.g., from users/processes using up all resources
E.g., from processes writing into other processes’ memory
(address spaces)

Protection requires hardware support!
Applications unprivileged (user-mode)
OS privileged (kernel-mode)

OS Invocation OS Concepts

F. Bellosa – Betriebssysteme WT 2016/2017 2/29

Central Processing Unit (CPU) - Modes of Execution
User Mode (x86: “Ring 3” or CPL3)

Only non-privileged instructions may be executed
Cannot manage hardware in this mode Þ protection!

Kernel Mode (x86: “Ring 0” or CPL0)
All instructions allowed: Can manage hardware with privileged instructions

OS Invocation OS Concepts

F. Bellosa – Betriebssysteme WT 2016/2017 3/29

OS Invocation

OS Invocation OS Concepts

F. Bellosa – Betriebssysteme WT 2016/2017 4/29

Invoking the Operating System

The Operating System Kernel does not always run in the background
Not even if there are multiple cores/CPUs!

Three occasions invoke the Kernel and switch to kernel-mode

System calls User-Mode processes requires higher privileges

Interrupts CPU-external device sends a signal

Exceptions The CPU signals an unexpected condition

OS Invocation OS Concepts
System Calls Interrupts Exceptions

F. Bellosa – Betriebssysteme WT 2016/2017 5/29

System Call Motivation

Problem: Want to protect processes from one another

Idea: Restrict processes by running them in CPU user-mode

Problem: Now processes cannot manage hardware and other protected
resources

Who can switch between processes?
Who decides if the process may open a certain file?

Idea: The operating system provides services to applications
(e.g., hardware management)

Application calls the system if service needed (System Call, syscall)
OS can check if application is allowed to perform the action that it asks for
If application may perform that action and has not exceeded its quota yet,
the OS performs the action in kernel mode, on behalf of application

OS Invocation OS Concepts
System Calls Interrupts Exceptions

F. Bellosa – Betriebssysteme WT 2016/2017 6/29

Examples of Linux System Calls

In Linux system calls are documented in manual section 2
e.g., man 2 write

An overview of all syscall is given in man 2 syscalls

If you like colored keywords, consider replacing your default $PAGER
sudo apt-get install most, then export PAGER=most in .bashrc
vimpager is great if you like vim

OS Invocation OS Concepts
System Calls Interrupts Exceptions

F. Bellosa – Betriebssysteme WT 2016/2017 7/29

System Calls vs. APIs

The syscall interface between
applications and OS services provides a
limited number of well-defined entry
points to the kernel

Programmers often use syscalls via
Application Program Interfaces (APIs)

In this example the printf library call
uses the write system call to output text
to the console.

Most common APIs are
Win32 API for Windows
POSIX API for virtually all versions of UNIX, Linux, and Mac OS X
C API man pages can be found in man section 3 (e.g., man 3 printf)

OS Invocation OS Concepts
System Calls Interrupts Exceptions

F. Bellosa – Betriebssysteme WT 2016/2017 8/29

Application
Code

printf in c
 standard

library

write in
OS Kernel

Function Call

System Call

System Call Implementation

Although there are many different system
calls, there is only one system call interface
(entry point) into the kernel

The trap instruction is that single entry point
The trap instruction switches the CPU to kernel
mode and enters the kernel in the same,
predefined way for every syscall
(e.g., Intel: sysenter, AMD: syscall)
The system call dispatcher in the kernel then
acts as a multiplexer for all syscalls

Syscalls are identified by a number which is passed as a parameter
The system call table maps system call numbers to kernel functions
The dispatcher decides where to jump based on the number and table
Programs (e.g., stdlib) have the system call number compiled in!
For compatibility: never reuse old numbers in future versions of kernel.

OS Invocation OS Concepts
System Calls Interrupts Exceptions

F. Bellosa – Betriebssysteme WT 2016/2017 9/29

printf in c
 standard

library

Trap Instruction

Syscall Dispatcher

write open

Interrupts

Devices use interrupts to signal predefined conditions to the OS
Recall: The device has an “interrupt line to CPU”
e.g., device controller informs CPU that it has finished an operation

The Programmable Interrupt Controller manages interrupts
(e.g., x86 APIC)

Interrupts can be masked (ignored for now)
Masked interrupts are queued and delivered when the interrupt is unmasked
The queue has finite length Þ interrupts can get lost

Notable examples for interrupts are
e.g., Timer-Interrupt periodically interrupts processes and switches to kernel
Þ Can then switch to different process to enforce fairness between
processes
e.g., Network Interface Card interrupts CPU when a packet was received
Þ Can deliver the packet to process and free the NIC buffer

OS Invocation OS Concepts
System Calls Interrupts Exceptions

F. Bellosa – Betriebssysteme WT 2016/2017 10/29

Interrupts

When interrupted, the CPU
looks-up the interrupt vector, a table that is pinned in memory and contains
the addresses of all service routines (set up by the OS)
transfers control to the respective interrupt service routine in the OS that
handles the interrupt

The interrupt service routine must first save the state of the interrupted
process

Instruction pointer
Stack pointer
Status word

OS Invocation OS Concepts
System Calls Interrupts Exceptions

F. Bellosa – Betriebssysteme WT 2016/2017 11/29

Exceptions

Sometimes, an unusual condition makes it impossible for the CPU to
continue processing

What should happen if a program calls div with a zero denominator?
What should happen if a program tries to write a read-only memory area?
What if the program jumps to an invalid opcode?

On such occasions, an exception is generated within the CPU
The CPU interrupts the program and gives the kernel control
The kernel can determine the reason for the exception
If the kernel can resolve the problem it does so and continues the
faulting instruction
Otherwise it kills the process

Note that, in addition to the source, there is another distinction between
interrupts and exceptions

Interrupts can happen in any context
Exceptions always occur synchronous to and in the context of a process

OS Invocation OS Concepts
System Calls Interrupts Exceptions

F. Bellosa – Betriebssysteme WT 2016/2017 12/29

OS Concepts

OS Invocation OS Concepts
System Calls Interrupts Exceptions

F. Bellosa – Betriebssysteme WT 2016/2017 13/29

Physical Memory

Up to the early 60’s programs were loaded into and run directly into
physical memory

If the program was too large, the programmer partitioned his program
manually into overlays

The OS could then swap overlays between disk and memory

Different jobs could observe and modify each others memory contents

OS Invocation OS Concepts
Virtual Memory Processes Scheduling Files Storage

F. Bellosa – Betriebssysteme WT 2016/2017 14/29

Address Spaces

Need to isolate bad programs and people. Otherwise:
Buggy program could trash other programs
Malicious user could steal other users passwords
Selfish user could use up all memory for himself

Idea: Give every job the illusion of having all memory to itself
Every job has its own address space and cannot name addresses of other
jobs
Jobs always and only use virtual addresses

OS Invocation OS Concepts
Virtual Memory Processes Scheduling Files Storage

F. Bellosa – Betriebssysteme WT 2016/2017 15/29

Virtual Memory: Indirect Addressing

Today, every CPU has a memory management unit (MMU) built-in

The MMU translates virtual addresses to physical addresses at every
load and store operation

Address translation protects one program from another

1. VirtualCPU MMU

2b. Fault

Physical
Memory

2a. Physical
AddressAddress

3. Data

Definitions
Virtual address address in process’ address space

Physical address address of real memory

OS Invocation OS Concepts
Virtual Memory Processes Scheduling Files Storage

F. Bellosa – Betriebssysteme WT 2016/2017 16/29

Memory Protection

MMU allows kernel-only virtual addresses
Kernel typically part of all address spaces
Ensures that applications can’t touch kernel memory

MMU can enforce read-only virtual addresses
Makes safe sharing of memory between applications possible

MMU can enforce execute disable
Makes code injection attacks harder

OS Invocation OS Concepts
Virtual Memory Processes Scheduling Files Storage

F. Bellosa – Betriebssysteme WT 2016/2017 17/29

Page Faults

Not all addresses need to be mapped at all times
MMU issues a page fault exception when an accessed virtual address is not
mapped
The OS handles page faults by loading the faulting addresses and then
continuing the program

Þ Memory can be over-committed: More memory than physically available
can be allocated to application

Page faults are also issued by the MMU on illegal memory accesses
e.g., if an application tries to

access kernel memory
write read-only memory
set the instruction pointer to executable disable memory

OS Invocation OS Concepts
Virtual Memory Processes Scheduling Files Storage

F. Bellosa – Betriebssysteme WT 2016/2017 18/29

Processes

A process is a program in execution – an “instance” of a program
Each process is associated with a process control block (PCB)

Information about allocated resources, e.g., open files with seek pointer

User-Space

Kernel-Space

PCB 1

Address
Space 1

PCB 2

Address
Space 2

Each process is associated with an virtual address space (AS)
All (virtual) memory locations a program can name
Starts at 0 and runs up to a maximum
Address 123 in AS1 is generally not the same as address 123 in AS2
Indirect addressing makes it possible to give different processes different AS

Þ Protection between processes: If you can’t name it, you can’t touch it

OS Invocation OS Concepts
Virtual Memory Processes Scheduling Files Storage

F. Bellosa – Betriebssysteme WT 2016/2017 19/29

Address Space Layout

Typically address spaces are laid-out in different sections
Memory addresses between sections are illegal
Using such illegal addresses (also) leads to a page fault
Such page faults are more specifically called segmentation fault
The OS generally handles segmentation faults by killing the faulting process

Stack Function history and local
variables

Data Constants, static variables,
global variables, strings

Text Program code

OS Invocation OS Concepts
Virtual Memory Processes Scheduling Files Storage

F. Bellosa – Betriebssysteme WT 2016/2017 20/29

Threads
Each process consists of ≥1 threads representing execution states

Instructions pointer register (IP) stores the currently executed instruction
An address in the text section

Stack pointer (SP) register stores the address of the top of the stack
With > 1 threads, there are also multiple stacks!

Program status word (PSW) contains flags about the execution history
e.g., last calculation was zero Þ used in following jump instruction

And more, e.g., general purpose registers, floating point registers, . . .

User-Space

Kernel-Space

PCB

Threads

OS Invocation OS Concepts
Virtual Memory Processes Scheduling Files Storage

F. Bellosa – Betriebssysteme WT 2016/2017 21/29

Policies vs. Mechanisms

When designing an OS it is useful to separate policies from mechanisms

Mechanism Implementation of what is done
(e.g., the commands to put a HDD into standby mode)

Policy The rules which decide when what is done and how much
(e.g., how often, how many resources are used, . . .)

Mechanisms can be reused even when the policy changes

OS Invocation OS Concepts
Virtual Memory Processes Scheduling Files Storage

F. Bellosa – Betriebssysteme WT 2016/2017 22/29

Scheduling

With multiple processes and threads available, the OS needs to switch
between processes to provide multi-tasking

The scheduler decides which job to run next (policy)

The dispatcher performs the actual task-switching (mechanism)

Schedulers try to
provide fairness
while meeting goals
and adhering
priorities

OS Invocation OS Concepts
Virtual Memory Processes Scheduling Files Storage

F. Bellosa – Betriebssysteme WT 2016/2017 23/29

Files

The OS hides peculiarities of disks and other I/O devices
Programmer uses device-independent files and directories for
persistent storage

Files associate file name and offset with bytes
Directories associate directory names either with other directory names or
with file names

The file system is an ordered collection of blocks
Main task: translate (directory name + file name + offset) to block
Programmer uses file system operations to operate on files

open, read, seek

Processes can communicate directly through a special named pipe file
Pipes are used with the same operation as any other file

OS Invocation OS Concepts
Virtual Memory Processes Scheduling Files Storage

F. Bellosa – Betriebssysteme WT 2016/2017 24/29

Directory tree

Directories form a directory tree/file hierarchy Þ structure data
The root directory is the topmost directory in the directory tree
Files are specified by providing the path name to the file

OS Invocation OS Concepts
Virtual Memory Processes Scheduling Files Storage

F. Bellosa – Betriebssysteme WT 2016/2017 25/29

Mounting File Systems

In UNIX like systems, it is common to orchestrate multiple file systems
in a single file hierarchy

File systems can be mounted on a directory

In Windows, users manage multiple directory hierarchies named with
drive letters

E.g.: C:\Users

OS Invocation OS Concepts
Virtual Memory Processes Scheduling Files Storage

F. Bellosa – Betriebssysteme WT 2016/2017 26/29

Storage Management

OS provides uniform, logical view of information storage to file systems
Drivers hide specific hardware devices Þ hides peculiarities of devices
General interface abstracts physical properties to logical units Þ block

OS increases the performance of I/O devices

Buffering Store data temporarily while it is being transferred

Caching Store parts of data in faster storage for performance

Spooling Overlap of output of one job with input of other jobs

OS Invocation OS Concepts
Virtual Memory Processes Scheduling Files Storage

F. Bellosa – Betriebssysteme WT 2016/2017 27/29

Summary
The OS provides abstractions for and protection between application

The kernel does not always run: Certain events invoke the kernel
System call: Process asks the kernel for a service (e.g., open a file)
Interrupt: Device sends signal that the OS has to handle (e.g., I/O finished)
Exceptions: CPU encounters unusual situation (e.g., divide by 0)

Processes encapsulate resources needed to run a program in the OS
Threads: represent different execution states of a process
Address space: all memory the process can name
Allocated resources, e.g., open files

The scheduler decides which process to run next when multi-tasking

Virtual memory implements address spaces and provides protection
between processes

The I/O drivers and file system abstract the background store
Simple interface: Files and directories

OS Invocation OS Concepts

F. Bellosa – Betriebssysteme WT 2016/2017 28/29

Further Reading

Tanenbaum/Bos, “Modern Operating Systems”, 4th Edition:
Pages 38–50

Stallings, “Operating Systems – Internals and Design Principles”, 6th
Edition: Pages 50–104

Silberschatz, Galvin, Gagne, “Operating System Concepts”, 8th Edition:
Pages 23–54

OS Invocation OS Concepts

F. Bellosa – Betriebssysteme WT 2016/2017 29/29

	02. OS Concepts
	OS Invocation
	System Calls
	Interrupts
	Exceptions

	OS Concepts
	Virtual Memory
	Processes
	Scheduling
	Files
	Storage

